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Abstract 
 

In order to construct a mathematical model for response of stomatal conductance (gs) of Panax notoginseng (Burk.) F.H. 

Chen leaves to environmental factors. Three-year-old P. notoginseng seedlings were used as experimental materials. The 

daily variation of gs and environmental factors of P. notoginseng leaves in sunny and cloudy days was determined by 

LiCOR-6400 Infra-Red Gas Analyzer (IRGA) in September and October 2018. The stepwise regression method was used to 

analyze the response of gs of P. notoginseng leaves to environmental factors, and the optimal gs model of P. notoginseng 

leaves were simulated and verified by using two types of representative stomatal conductance models. The results showed 

that the daily variation of gs showed a double-peak curve in sunny days, while in cloudy days showed a single-peak curve. 

Photosynthetically active radiation (PAR), vapor pressure deficit (VPD) and air temperature (Tair) were the main 

environmental factors affecting gs, in which PAR and Tair were positively correlated with gs, while VPD was negatively 

correlated. The best fitting effect of gs of P. notoginseng leaves was Jarvis model 1, followed by Jarvis model 2 and Ball-

Berry model 2, and finally Ball-Berry model 1. The fitting effect of each model in the afternoon was better than that in the 

morning. Therefore, the optimal response model of gs of P. notoginseng leaves to environmental factors was established, 

which was: 2

a

s

200.12PAR(1 0.312VPD)(1.347-0.086T+0.002T )(1 0.002C )
=

(121.36 PAR)(1+12.75VPD)
g

 



. This model not only helped to further estimate leaf photosynthesis, 

but also laid the foundation for simulating water and heat exchange in the soil-plant-atmosphere systems. © 2019 Friends 

Science Publishers 
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Introduction 
 

Stomata are the main channel for water and gas exchange 

between terrestrial plants and the environment, and are also 

an important regulatory channel for material and energy 

exchange between soil-plant-atmosphere continuum (SPAC) 

in nature (Hetherington and Woodward, 2003; Bonan et al., 

2014). The degree of opening and closing of the stomata is 

usually expressed by the stomatal conductance (gs), which is 

related to the net photosynthetic rate and the CO2 

concentration (Buckley, 2007; Damour et al., 2010). The gs 

is an important factor in determining plant photosynthesis 

and transpiration intensity (Miner et al., 2017). An accurate 

and quantitative description of plant stomatal response to the 

environment is a key to understand the plant photosynthesis 

and plant transpiration; and to predict the plant productivity, 

water and heat exchange within SPAC. 

Numerous studies reported on the relationship 

between gs and environmental factors in plant leaves 

(Bernacchi et al., 2007; Igarashi et al., 2015; Sperry et al., 

2017; Urban et al., 2017). Bunce (2000) revealed that 

under natural conditions, gs is affected by 

photosynthetically active radiation (PAR), vapor pressure 

deficit (VPD) and air temperature (Tair). Wang et al (2016) 

indicated that gs is regulated by different environmental 

factors in different periods. PAR, VPD and Tair have the 

most significant effects on gs during the whole day and 

morning, while gs in the afternoon is also affected by CO2 

concentration (Ca) and relative humidity (RH). The 

abscisic acids (ABA) in xylem sap and leaf water potential 

are also involved in stomatal control, and different species 

have different effects (Tardieu and Davies, 1993; Buckley 

and Mott, 2002). Some studies have shown that when the 

environmental response mechanism of stomata is not well 
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understood, model simulation becomes the most effective 

and appropriate tool (Buckley, 2017). 

The gs model is an important tool for evaluating 

stomatal regulation in plant leaves. There are two main 

models for describing the relationship between gs and 

environmental factors in plant leaves: (1) the multivariate 

nonlinear model of stomatal conductance and environmental 

factors established by Jarvis (Jarvis, 1976); and (2) the 

linear correlation model of stomatal conductance and net 

photosynthetic rate with environmental factors established 

by Ball (Ball et al., 1987; Ball, 1988). 

The Jarvis model is a typical factorial empirical model, 

which is a function of a series of single factor correction 

coefficients, but parameters in Jarvis model do not have a 

clear physiological significance, which changes with the 

specific plot or variety (Calvet, 2000). The Ball model (Ball, 

1988) is a semi-empirical model based on experimental data 

that considers a linear relationship between gs and net 

photosynthetic rate. Based on the Ball model, different forms 

of gs correction models are presented such as Ball-Woodrow-

Berry model (BWB) model (Ball et al., 1987) and Ball-

Berry-Leuning (BBL) model (Leuning, 1995), but the 

essence of these modified models is still the Ball-Berry (BB) 

model. In terms of the applicability of these two models, a 

large number of experiments have been carried out on crops 

(Yu et al., 2001). However, the fitting ability of the two 

models has certain differences depending on the research 

objective and the regional environmental conditions (Gao et 

al., 2016). 

Panax notoginseng (Burk.) F.H.Chen has a long history 

as a traditional Chinese herbal medicine (Tung and Hai, 

2016). The growth conditions of P. notoginseng are harsh. 

For a long time, the cultivation of P. notoginseng is limited 

by temperature, humidity, sunshine and other external 

climatic conditions so the greenhouse cultivation of P. 

notoginseng will become the main trend. In the process of 

planting P. notoginseng in greenhouse, it is an important way 

to improve water use efficiency to regulate the environment 

according to the physiological needs of P. notoginseng. 

Therefore, studying the influence of environmental factors on 

stomatal conductance of P. notoginseng is helpful to explain 

the water use mechanism of P. notoginseng and optimize 

environmental management. At present, the relationship 

between gs and environmental factors of P. notoginseng 

leaves and the numerical simulation of gs is rarely reported. 

This paper will attempt to analyze the main environmental 

factors affecting the gs of P. notoginseng leaves based on 

field observation. Two types of representative international 

gs models were compared to establish an optimal gs model 

suitable for the P. notoginseng leaves. 

 

Materials and Methods 
 

Experiment Location and Materials 

 

The experiment was conducted in Venlo-type glasshouse of 

the Agricultural Meteorological Experiment Station of 

Nanjing University of Information Science and Technology 

from September to October 2018, Jiangsu Province, China 

(32°14'N, 118°42'E). The Venlo-type glasshouse, with a 

north-south length of 30 m, is composed of 12 spans, each 6 

m wide in the east-west direction. The height of gutter and 

ridge was 4 m and 4.73 m, respectively. 

The experiment materials were three-year-old sanchi 

seedlings (Panax notoginseng (Burk.) F.H. Chen) grown in 

pots (40 cm × 20 cm × 20 cm) provided by farmers in 

Qiubei County, Wenshan Prefecture, Yunnan Province. The 

seedlings height was 18–20 cm and the number of leaves 

was 6–10. The pots were filled with Humus-rich red loam 

soil, its pH value was 6.5, and the soil water content was 

always maintained at 35–40%, which were the most suitable 

conditions for the growth of P.notoginseng seedlings. 

 

Measurements 

 

Meteorological data collection: The environmental data 

was collected by the automatic data collector (CR-10X, 

USA), and the air temperature (Tair) and humidity (RH) at 

1.5 m from the ground and the photosynthetically active 

radiation (PAR, μmol·m
-2

·s
-1

) above the canopy of the crop 

were collected. The frequency was 1 time every 10 s, and 

the average value was stored every 30 min. 

Determination of stomatal conductance: In September, 

typical sunny days (3 days) and cloudy days (3 days) were 

selected as observation days, and repeated the above 

determination in October. Design of the experiments was 

completely randomized with three replications. Healthy, 

non-destructive leaves were selected for determination, with 

each leaf repeated five times each time. The portable Infra-

Red Gas Analyzer (LI-COR Inc., Lincoln, NE, USA) was 

used to measure the photosynthetic parameters on hourly 

basis from 8:00 am to 18:00 pm. The parameters recorded 

were net photosynthetic rate (Pn, mol·m
-2

·s
-1

), stomatal 

conductance (gs, mol·m
-2

·s
-1

), air CO2 concentration (Ca, 

μmol·mol
-1

), intercellular CO2 concentration (Ci, μmol·mol
-1

), 

and Vapor Pressure Deficit (VPD, kPa). The data measured 

in September was used for the establishment of the model, 

and the data for October was used for the verification of the 

model. This study does not consider the effect of leaf water 

potential on gs. 

 

Stomatal Conductance Model Description 

 

Jarvis model: Jarvis (1976) considers that stomatal 

conductance is the product of the combined action of several 

environmental factors. The comprehensive effect of multiple 

environmental factors on leaf stomatal conductance can be 

obtained by superposition of stomatal conductance response 

to a single environmental factor. The specific form of the 

model was as follows, 
 

gs=gs(PAR)f(VPD)f(φ)f(T)f(Ca)                        (1)
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Where gs is stomatal conductance, while gs (PAR), 

f(VPD), f(φ), f(Ta), and f(Ca) are response functions of 

photosynthetic active radiation, saturated water vapor 

pressure difference, leaf water potential, temperature and 

CO2 concentration to stomatal conductance, respectively. 

PAR is the dominant factor determining stomatal 

conductance, while f(VPD), f(φ), f(Ta), f(Ca) mainly revise 

gs (PAR) with the values ranging from 0 to 1. 

When constructing the Jarvis model, there are many 

expressions for the influence functions of each factor 

(Medlyn et al., 2011). Different expressions contain 

different numbers of parameters, which leads to differences 

in the complexity and prediction effects of the model. In 

order to compare models with different degrees of 

complexity, two different response function expressions 

were selected in this study. The first group contains 8 

parameters, and the corresponding model is called Jarvis 

model 1 while the second group contains 4 parameters, the 

corresponding model is called Jarvis model 2. 

The Influence function of each environmental factor in 

Jarvis model 1 was expressed as: 

 

1

s
2

a PAR
(PAR)

a PAR
g 



    (2) 

 

1

2

1 b VPD
f (VPD)

1+b VPD




    (3) 

 

2

1 2 3f(T)=c +c T+c T     (4) 
 

    a 1 af (C ) 1 d C              (5) 
 

The Influence function of each environmental factor in 

Jarvis model 2 was expressed as: 

 

s

PAR
(PAR)

a PAR
g 



    (6) 

 

1
f (VPD)

b+VPD
     (7) 

 

2f(T)=cT               (8) 
 

a af (C ) 1 dC             (9) 

 

Where, a1, a2, b1, b2, c1, c2, c3, d1, a, b, c and d are 

model parameters. Therefore, Jarvis Model 1 and Jarvis 

Model 2 are Eqs. (10) and (11), respectively. 

 

2

1 1 1 2 3 1 a

s
2 2

a PAR(1 b VPD)(c +c T+c T )(1 d C )
=

(a PAR)(1+b VPD)
g

 



 (10) 

 

2

a

s

PARcT (1 dC )
=

(a PAR)(b+VPD)
g





            (11) 

 

Ball-berry model: (Ball
 

et al., 1987): When CO2 

concentration and atmospheric humidity are constant; the 

stomatal conductance has a linear relationship with the net 

photosynthetic rate. Ball and Berry proposed the following 

linear stomatal conductance model.
 
 

n s

s
s

mA h
= b

C
g 

            (12) 

 

Where, An is the net photosynthetic rate; hs and Cs are 

the atmospheric relative humidity and the leaf surface CO2 

concentration, respectively; m and b are the empirical 

coefficients, while Anhs/Cs is the stomatal conductance 

index. However, due to the poor prediction ability of the 

Ball-Berry model at low CO2 concentration, Leuning (1995) 

revised the Ball-Berry model. 
 

n
s0

s
s S 0

mA
g

(C )(1 VPD / VPD )
g  

 

    (13) 

 

Where, m, VPD0, and gs0 are model parameters; Γ is 

the CO2 compensation point, which varies with different 

varieties. 

 

Performance of Stomatal Conductance Models 

 

The experimentally segregated data were fitted using 

Sigmaplot 12.5 (SYSTAT Software, USA) to determine 

model parameters, give fitness (R
2
) and significance 

(P≤0.01). The simulation effects of each model were 

evaluated by root mean square error (RMSE), model slope 

(b0), and Akaike information criterion (AIC). The 

calculation formulas for RMSE, b0 and AIC are respectively 

described as follow: 
 

 
n

2

ii
1RMSE

n

O M

   (14) 

 

n

ii
i 1

no
2

i
i 1

O M
b

O










   (15) 

 

 
n

2

ii
1AIC n ln 2(k 1)

n

O M
  

  (16) 

 

Where, Oi represents the measured value; Mi 

represents the observed value; n is the number of samples; k 

is the number of parameters in the model. The smaller the 

RMSE value, the better the simulation effect; the model 

slope b0 reflects the overestimation or underestimation of the 

model. When b0 > 1, it means an overestimation, and b0 < 1 

means underestimation; the closer to 1, the better the 

simulation effect; AIC can estimate the complexity of the 

model and the pros and cons of the model fitting effect. The 

smaller the value, the better the simulation effect of the 

model. 
 

Results 
 

Diurnal Variation of gs in Leaves of P. notoginseng 

 

The daily variation of gs in the leaves of P. notoginseng on 
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sunny and cloudy days is shown in Fig. 1. On sunny days, 

the daily variation of gs in leaves of P. notoginseng showed 

a bimodal curve, reaching the maximum at 11:00 am and 

15:00 pm, respectively, and the maximum value in the 

morning was greater than the maximum in the afternoon. On 

cloudy days, the daily variation of gs in leaves of P. 

notoginseng showed a single-peak curve, reaching the 

maximum at 11: 00 am, and then continued to decline. 

 

Relationship between gs of P. notoginseng Leaves and 

Environmental Factors based on the Analyzed Data 

 

When PAR<400 μmol·m
-2

 s
-1

, the gs increased with the 

increase of PAR. When PAR>400 μmol·m
-2

 s
-1

, the gs 

decreased (Fig. 2a). The gs increased with an increase of Ci, 

and gradually decreased to about 400 μmol·mol
-1

 s
-1

, and the 

two showed a quadratic curve relationship (Fig. 2b). The gs 

increased with the increase of VPD within a certain range. 

When VPD reached about 1 kPa, gs reached the highest 

value, and then gs decreased with the increase of VPD (Fig. 

2c). The gs of P. notoginseng leaves increased with the 

increase of Tair, reached the maximum at around 25°C, and 

then gradually decreased with the increase of Tair (Fig. 2d). 

The gs increased with the increase of RH, reached the 

maximum at about 49%, and then gradually decreased with 

an increase in RH. When RH is between 40% and 55%, the 

value of gs was the largest (Fig. 2e). 

 

Impact of Main Environmental Factors 

 

The regression equation of gs of P. notoginseng leaves and 

various environmental factors is shown in Table. 1 (P<0.01). 

The most significant environmental factors affecting gs of P. 

notoginseng leaves were PAR, VPD and Tair. Among them, 

gs was one hand positively correlated with PAR and Tair, 

while negatively correlated with VPD. 

 

The gs Model of P. notoginseng Leaves 

 

The simulation results of each model are given in Table 2, 

and all models pass the significance test (P＜0.01). The 

accuracy of fitting gs of P. notoginseng leaves in the 

afternoon was higher than that in the morning. Overall, the 

accuracy of Jarvis model was higher than that of Ball-Berry 

model (Fig. 3). 

A linear relationship between the simulated and 

observed values of each model was shown in Fig. 4. The 

results of model simulation showed that Jarvis model 1 had 

the highest R
2 
(0.93), followed by Jarvis model 2 (0.90) and 

Ball-Berry model 2 (0.87), and Ball-Berry model 1 (0.80) 

had the lowest. 

 

Performance of Four gs Models 

 

The evaluation index of simulation effect of each model is 

shown in Table 3. From the RMSE, b0 and ACI, it can be 

seen that the fitting effect of each model in the afternoon 

was better than that in the morning. In general, the fitting 

effect of Jarvis model in each period was better than that of 

Ball-Berry model. 
 

Discussion 
 

Stomata play a role of balance regulation in plants and are 

the key link in regulating the exchange of substance and 

energy between soil-plant-atmosphere-continuum (Gao et al., 

2016). It is the basis for exploring the dynamics of energy 

and water exchange in plants to clarify the relationship 

between gs of leaves and the environmental factors. Wang et 

al. (2001) showed that the stomatal conductance of 

Aneurolepidium chinense leaves is very significant in 

response to PAR, VPD and Tair. Our results showed that 

PAR, VPD and Tair were the main environmental factors 

affecting stomatal conductance, in which PAR and Tair were 

positively correlated with gs, while VPD was negatively 

correlated, which were not only consistent with previous 

conclusions from other plants (Running and Coughlan, 1988; 

Roberntz and Stockfors, 1998; Li et al., 2010; Wang et al., 

2016) but also in line with the assumptions of the Jarvis 

model (Jarvis, 1976). 

The Jarvis model and the Ball model are the two most 

representative types of gs models. The results of this study 

 
 

Fig. 1: The diurnal variation of stomatal conductance of P. 

notoginseng leaves on (a) sunny day and (b) cloudy day 
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showed that Jarvis Model 1 has the highest prediction 

accuracy, followed by Jarvis Model 2 and Ball Model 2, and 

finally Ball Model 1. The Jarvis model 1 has the largest 

number of parameters and the Ball model 1 has the fewest. 

The Jarvis model 1 with the most parameters has the best 

prediction effect on the P. notoginseng stomatal conductance, 

while the Jarvis model 2 with the least parameter has the 

worst prediction effect (Table 2). In the two Ball models, the 

prediction of the Leuning modified Ball model is better than 

the original Ball model. The results of this study are 

consistent with previous studies on other plants (Wang et al., 

2001; Tang et al., 2008; Wang et al., 2016). In addition, the 

linear relationship between gs and Pn was a prerequisite for 

the construction of the Ball model (Ball et al., 1987). In this 

study, there was a significant positive correlation between gs 

and Pn in P. notoginseng, but it was a quadratic curve (Fig. 

4), which was inconsistent with the mechanism of Ball 

model construction, which resulted in the Ball model that is 

not fitting better than the Jarvis model. In the study related to 

the conductance of P. notoginseng, it is recommended to use 

Jarvis model for simulation. In the actual application process, 

the parameters of the model will vary according to the 

region, variety, growth period and water supply. Therefore, 

it needs to be revised according to the actual situation. 

Although Jarvis Model 1 has the best prediction effect, the 

number of parameters is large and no specific biological 

 
 

Fig. 2: The relationship between stomatal conductance of P. notoginseng leaves and environmental factors 
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significance, so it is more difficult to revise the parameters 

when extended to other regions and varieties. 

 

Conclusion 
 

The response of gs of P. notoginseng leaves to 

environmental factors remains unclear. Based on the 

measured data, the main environmental factors affecting 

stomatal conductance of P. notoginseng leaves were 

determined, and the response model of stomatal conductance 

to the main environmental factors in different periods of 

sunny and cloudy days was constructed. The optimal 

stomatal conductance model of P. notoginseng leaves was 

established by comparing the two types of representative 

models in the world, which was: 
 

2

a

s

200.12PAR(1 0.312VPD)(1.347-0.086T+0.002T )(1 0.002C )
=

(121.36 PAR)(1+12.75VPD)
g

 

  
 

This model not only helped to further estimate leaf 

photosynthesis, but also laid the foundation for simulating 

water-heat exchange between soil-plant-atmosphere systems. 
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 whole day gs= -0.218-0.077Vpd+0.15Tair+0.552PAR 309 128.526 Vpd, Tair and PAR 0.775** 

Sunny day morning gs= -0.076-1.992Vpd+0.933Tair+1.183PAR 137 33.378 Vpd, Tair and PAR 0.855** 

 afternoon gs=0.012+0.005Ci-1.127Vpd+0.443Tair+0.598PAR 172 106.533 Ci, Vpd, Tair and PAR 0.810** 
 whole day gs= -0.151-1.512Vpd+0.968Tair+0.473PAR 318 63.428 Vpd, Tair and PAR 0.786** 

Cloudy day morning gs= -0.23-2.438RH-6.074Vpd+4.251Tair+0.784PAR  135 121.156 RH, Vpd, Tair and PAR 0.824** 

 afternoon gs= 0.146+0.379Ci-2.231RH-5.553Vpd+2.989Tair+1.208PAR 183 44.804 Ci, RH, Vpd, Tair and PAR 0.708** 
 whole day gs= -0.042-1.314Vpd+0.695Tair+0.534PAR 627 145.038 Vpd, Tair and PAR 0.888** 

Total morning gs= -0.055-1.365Vpd+0.806Tair+0.454PAR 272 46.065 Vpd, Tair and PAR 0.778** 

 afternoon gs= -0.196-1.122Vpd+0.970Tair+0.554PAR 355 127.190 Vpd, Tair and PAR 0.722** 
**denotes the significant difference at the 0.01 level 

 

Table 2: Estimated parameters at Jarvis and Ball-Berry models 

 
Model Time Parameter values of simulation Correlation coefficient( r) 

 whole day a1=200.12, a2=121.36, b1=0.312, b2=12.75, c1=1.347, c2=-0.086, c3=0.002, d1=0.002 0.897** 

Jarvis model 1 morning a1=186.46, a2=132.16, b1=0.286, b2=10.45, c1=2.556, c2=-0.096, c3=0.003, d1=0.002 0.778** 
 afternoon a1=218.33, a2=101.26, b1=0.455, b2=15.42, c1=1.198, c2=-0.077, c3=0.001, d1=0.004 0.802** 

 whole day a=144.32,b=-0.567,c=0.003,d=0.003 0.809** 

Jarvis model 2 morning a=165.32,b=-0.698,c=0.002,d=0.001 0.756** 
 afternoon a=123.89,b=-0.435,c=0.004,d=0.005 0.779** 

 whole day m=0.078,b=0.322 0.752** 

Ball-Berry
 

model 1 morning m=0.085,b=0.268 0.698** 
 afternoon m=0.634,b=0.421 0.701** 

 whole day m=6825.31, VPD0=0.001, and gs0=0.023
 

0.789** 

Ball-Berry
 

model 2 morning m=6678.59, VPD0=0.003, and gs0=0.031
 

0.756** 

 afternoon m=7035.12, VPD0=0.002, and gs0=0.014
 

0.773** 

**denotes the significant difference at the 0.01 level 
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Table 3: Performance of Jarvis and Ball-Berry models 
 

Model Time Root mean square 

error (RMSE) 

Model 

slope (b0) 

Akaike information 

criterion (AIC) 

Jarvis 

model 1 

Whole 

day 

0.0885 0.986 -183 

Jarvis 

model 2 

Whole 

day 

0.0861 0.953 -200 

Ball-Berry 

model 1 

Whole 

day 

0.0661 0.901 -244 

Ball-Berry 

model 2 

Whole 

day 

0.0752 0.923 -231 

 

 
 

Fig. 4: The relationship between net photosynthesis rate and 

stomatal conductance 
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Fig. 3: Comparison of estimated and measured values of 

stomatal conductance of P. notoginseng leaves 
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